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TECHNIQUES FOR GROUND-LEVEL PHOTO
GEOLOCATION USING DIGITAL
ELEVATION

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application is a continuation of U.S. application Ser.
No. 13/744,688 filed on Jan. 18, 2013, now U.S. Pat. No.
9,165,217, the disclosure of which is incorporated by refer-
ence herein.

FIELD OF THE INVENTION

The present invention relates to data analysis and mining
and more particularly, to techniques for generating cross-
modality semantic classifiers and using those cross-modality
semantic classifiers for ground level photo geo-location using
digital elevation maps augmented with satellite imagery.

BACKGROUND OF THE INVENTION

Current photo geolocation processes permit geolocation in
urban and well-developed areas where many unique land-
marks exist and a dense amount of photographs are taken (by
tourists and residents). For example, Google Goggles, avail-
able from Google Inc., allows a user to obtain information
about a famous landmark using a search based on a photo-
graph of the landmark. For instance, the user can take a
photograph of the Statue of Liberty or the Eiffel Tower and
through Google Goggles can search for information on these
well-known and well documented landmarks. The problem
with these photo geolocation technologies is that they are not
effective for remote regions where uniquely identifying fea-
tures and number of photographs acquired are limited.

Current photo-to-terrain alignment processes permit reg-
istration of a ground level photograph with digital elevation
maps (DEMs), if the position from which the photograph was
taken is already known to within some accuracy range. See,
for example, L. Baboud et al., “Automatic Photo-to-Terrain
Alignment for the Annotation of Mountain Pictures,” 24"
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 41-48 (2011) (hereinafter “Baboud”).
While this technology works in remote locations, it requires
geospatial coordinates of the areas from which the photo-
graphs were taken. Thus, this technology does not solve the
geolocation problem described above.

Thus, improved techniques for geolocating images would
be desirable.

SUMMARY OF THE INVENTION

The present invention provides techniques for generating
cross-modality semantic classifiers and using those cross-
modality semantic classifiers for ground level photo geo-
location using digital elevation maps augmented with satellite
imagery. In one aspect of the invention, a method for gener-
ating cross-modality semantic classifiers is provided. The
method includes the steps of: (a) using Geographic Informa-
tion Service (GIS) data to label satellite images; (b) using the
satellite images labeled with the GIS data as training data to
generate semantic classifiers for a satellite modality; (¢) using
the GIS data to label Global Positioning System (GPS) tagged
ground level photos; (d) using the GPS tagged ground level
photos labeled with the GIS data as training data to generate
semantic classifiers for a ground level photo modality,
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wherein the semantic classifiers for the satellite modality and
the ground level photo modality are the cross-modality
semantic classifiers.

In another aspect of the invention, a method for geo-locat-
ing a query ground level photo of an unknown location from
combined elevation data and satellite imagery is provided.
The method includes the steps of: (a) parsing the query
ground level photo into one or more semantic regions; (b)
assigning semantic labels to the semantic regions; (c) using
cross-modality semantic classifiers to identify geo-spatial
regions in the combined elevation data and satellite imagery
that have at least one semantic classifier in common with the
query ground level photo; and (d) performing matches of the
query ground level photo with the combined elevation data
and satellite imagery for each of the geo-spatial regions iden-
tified in step (c).

A more complete understanding of the present invention,
as well as further features and advantages of the present
invention, will be obtained by reference to the following
detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is schematic diagram illustrating an exemplary pro-
cess for generating cross-modality (satellite/ground level
image) semantic classifiers according to an embodiment of
the present invention;

FIG. 2 is a diagram illustrating an exemplary methodology
for geolocating a ground level photo of an unknown location
from combined elevation data and satellite imagery according
to an embodiment of the present invention;

FIG. 3A is a schematic diagram illustrating an exemplary
combination of elevation data and satellite imagery according
to an embodiment of the present invention;

FIG. 3B is a schematic diagram illustrating an exemplary
query ground level image according to an embodiment of the
present invention;

FIG. 4A is a schematic diagram illustrating the exemplary
combined elevation data and satellite imagery from FIG. 3A
having been ranked based on the cross-modality semantic
classifiers according to an embodiment of the present inven-
tion;

FIG. 4B is a schematic diagram illustrating the exemplary
query ground level image according to an embodiment of the
present invention;

FIG. 5A is a schematic diagram illustrating the evaluation
of an array of positions in a geo-spatial region of the com-
bined elevation data and satellite imagery from FIG. 3A
which received a high semantic probability score according to
an embodiment of the present invention;

FIG. 5B is a schematic diagram illustrating the exemplary
query ground level image according to an embodiment of the
present invention;

FIG. 6A is a schematic diagram illustrating “rough-guess”
silhouette matching having been performed on points identi-
fied using cross-correlation according to an embodiment of
the present invention;

FIG. 6B is a schematic diagram illustrating the exemplary
query ground level image according to an embodiment of the
present invention; and

FIG. 7 is a diagram illustrating an exemplary apparatus for
performing one or more of the methodologies presented
herein according to an embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Digital elevation maps (DEMs) are an essential resource
for geolocating images that have been acquired in remote
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regions where few distinguishing characteristics present
themselves. In ground-level imagery, DEM data corresponds
to the ridges and valleys in the terrain. These features are
robust against illumination and seasonal changes, which
makes them temporally independent: an ideal characteristic
for most geolocating features, especially in remote regions.
Efficiently matching ground-level photos to DEM data, how-
ever, remains an open research problem. F. Stein et al., “Map-
Based Localization Using the Panoramic Horizon,” IEEE
Transactions on Robotics and Automation, vol. 11, no. 6, pgs.
892-896 (December 1995) (hereinafter “Stein”), the contents
of which are incorporated by reference herein, proposes a
system which is able to localize a panoramic horizon against
a DEM in approximately a minute. Stein presented only one
example of localization, and their map region was only 300
km,,. It is unclear how well the system would scale to larger
world regions and more queries with smaller fields of view.

Baboud, the contents of which are incorporated by refer-
ence herein, describes a system that is capable of determining
image capture orientation given the geographical coordinates
of'the camera. Spherical cross correlation is computed in the
fourier domain to efficiently prune the search space. After-
wards, a more accurate edge-matching algorithm is used for
refinement. Drawbacks of this technique include the require-
ment of the initial estimated position (within several hundred
meters) and the running time of two minutes per frame with
GPU acceleration.

Provided herein are techniques for geolocating images
using a hierarchical DEM/satellite imagery matching proce-
dure implemented, for example, on a massively parallel
Hadoop MapReduce cluster. Geo-spatial regions of low like-
lihood are eliminated in a hierarchical fashion, and remaining
regions of higher probability are subjected to more detailed
analysis. This is an improvement over previous methods by
drastically improving computational efficiency, making the
problem computationally feasible to compute, and eliminat-
ing the need for highly localized initial position estimates.

Exemplary embodiments of the present techniques are
directed to geolocating an image of an unknown location. As
will be described in detail below, cross-modality semantic
modeling between ground level photo and satellite imagery is
used to rule-out large areas of land that are not possibly the
source of the image. An exemplary methodology 100 for
generating cross-modality semantic classifiers is illustrated
schematically in FIG. 1.

As shown in FIG. 1, for the satellite modality, Geographic
Information System (GIS) Ground Truth data may be used to
label satellite images. For example, image data (such as sat-
ellite image data) can be read into the GIS, e.g., as araster file
or converted by the GIS into a vector data file. A raster file
(such as that shown in FIG. 1 (labeled “GIS Ground Truth))
contains rows of uniform cells encoded with data values. The
data values may correspond to different classifications such
as VEGETATION, WATER or DEVELOPMENT. By way of
example only, to convert a raster file to a vector data file, the
spatial relationship of cells is taken into account, and lines can
be created around cells sharing the same classification. The
satellite images which serve as input data in this process are of
known locations and can be obtained from publicly available
databases of satellite images. As will be described in detail
below, once semantic classifiers are generated from these
satellite training images as well as from GPS tagged ground
level images, these classifiers can then be used to geo-locate
untagged query ground level images.

An exemplary process for generating semantic classifiers
from image input data is described in Yan et al., “Large-Scale
Multimedia Semantic Concept Modeling Using Robust Sub-
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space Bagging and MapReduce,” Proceedings of the First
ACM Workshop on Large-Scale Multimedia Retrieval and
Mining LS-MMRM ’09, pgs. 35-42, Oct. 23, 2009, Beijing,
China (hereinafter “Yan”), the contents of which are incor-
porated by reference herein. Yan employs a combination of
forward model selection and data/feature sampling to gener-
ate semantic classifiers from the input data.

The same process is carried out to train semantic classifiers
for the ground level modality. Namely, as shown in FIG. 1,
GIS Ground Truth data is used to label ground level photos.
According to an exemplary embodiment, the ground level
photos are GPS tagged images obtained, for example, from a
Ground Level Photo Repository. Specifically, the ground
level photos in the repository are images of known locations
(i.e., images the geolocation of which are known based on
their GPS coordinates). As highlighted above, the present
techniques can be used to geo-locate a ground level photo of
an unknown location.

As described above, image data (such as in this case ground
level image data) can be read into the GIS, e.g., as a raster file
or converted by the GIS into a vector data file. A raster file
contains rows of uniform cells encoded with data values. The
data values may correspond to different classifications such
as VEGETATION, WATER or DEVELOPMENT.

The labeled ground level photos are then used to train
semantic classifiers for ground level photo modality. It is
notable that, as shown in FIG. 1, other training data genera-
tion methods can optionally be used in conjunction with the
GIS labeled GPS tagged ground level photos as training data
to generate the semantic classifiers for the ground level
modality. Other suitable training data generation methods
include, but are not limited to, supervised taxonomy—
whereby image labels are organized into a hierarchical tree
structure that contains both mutually exclusive labels (i.e.,
“Car” vs. “Truck”) and non-mutually exclusive labels (i.e.,
“Vegetation” and “Car”). As described above, by way of
example only, a forward model selection process such as that
described in Yan may be used to generate semantic classifiers
from the input data (in this case GPS tagged ground level
photos).

According to an exemplary embodiment, semantic classi-
fiers are also created, in the same manner as described above,
which contain a temporal component. That way, these tem-
poral semantic classifiers can be used to additionally deter-
mine what time of year a query photo was taken. This capa-
bility would add a temporal component to the present geo-
location process. By way of example only, this temporal
classification process might involve building different classi-
fiers for the satellite and ground level semantic modalities that
include a temporal component, such as vegetation (winter),
vegetation (spring), vegetation (summer), vegetation (au-
tumn), etc. See below.

The satellite and ground level cross-modality semantic
classifiers can then be used to geo-locate ground level photos
without GPS information in an unstudied region of the Earth
for which geospatially tagged satellite images (and perhaps
other modalities, not excluding some GPS tagged ground
level photos) are available. The query input in this case are
untagged ground level photos meaning that the photos are
ground level images of an unknown location, i.e., a location
for which the GPS coordinates are unknown. By way of the
process described in detail below, the query image can be
geo-located and optionally annotated (i.e., labeled/tagged),
for example, with GPS information. As shown in FIG. 1, once
the query ground level photos are labeled/tagged, they can be
added to ground level photo repository and, if so desired, the
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process outlined in FIG. 1 can be repeated to train the cross-
modality semantic classifiers with this expanded data set.

In one non-limiting exemplary implementation of the
present techniques, the steps of methodology 100 are imple-
mented in a distributed Map-Reduce framework, such as the
Apache Hadoop Distributed File System (HDFS). A Map-
Reduce model for distributed processing in general involves
both Map and Reduce functions for any computation. The
Map function first reads a list of input key and associated

values, and produces a list of intermediate { key, value) pairs.
After grouping and shuffling intermediate pairs with the same
keys, the Reduce function is applied to perform merge opera-
tions on all of the intermediate pairs for each key, and emits

output pairs of {key,value). See, for example, Yan et al.,
“Large-Scale Multimedia Semantic Concept Modeling using
Robust Subspace Bagging and MapReduce,” LS-MMRM 09
Proceedings of the First ACM workshop on Large-scale mul-
timedia retrieval and mining, pgs. 35-42 (October, 2009), the
contents of which are incorporated by reference herein.
Essentially, the MapReduce model transforms a plurality of

{key, value) pairs into a list of values. The input and output

{key,value) pairs can have different formats. The Map func-
tion can be performed in parallel on non-overlapping data
partitions. The Reduce function can be performed in parallel
on intermediate pairs with the same keys. The Map-Reduce
framework may be embodied in an apparatus, such as appa-
ratus 700 shown in FIG. 7, described below.

An exemplary embodiment (methodology 200) for using
the above-generated cross-modality (satellite and ground
level) semantic classifiers to geo-locate untagged ground
level photos is now described by way of reference to FIG. 2.
The inputs to methodology 200 are i) the cross-modality
semantic classifiers generated, for example, as described in
conjunction with the description of FIG. 1, above, ii) one or
more query ground level photos of an unknown location and
iii) combined elevation data and satellite imagery. According
to an exemplary embodiment, the combined elevation data/
satellite imagery is obtained simply by overlaying digital
elevation map (DEM) data onto satellite images. See, for
example, FIG. 3A (described below) wherein this classifica-
tion data (i.e., the data which will be used to classify/geo-
locate the query image) is labeled “DEM/satellite classifica-
tion overlay”” The satellite imagery component of the
classification data will be used for semantic classification
(i.e., the cross-modality semantic classifiers will be applied to
the satellite imagery components of the classification data),
and the elevation (e.g., DEM) data component of the classi-
fication data will be used for image orientation alignment.
Both of these aspects will be described in detail below. Thus,
each pixel in the combined elevation data and satellite imag-
ery contains the standard RGB color value (satellite imagery
data) as well as an elevation value (topography). The terms
“classification data” and “combined elevation data and satel-
lite imagery” will be used synonymously and interchange-
ably throughout the present description.

Basically, the present process uses the cross-modality
semantic classifiers to “coarsely” match the query ground
level image with the combined elevation data and satellite
imagery based on the query photo and the combined elevation
data and satellite imagery sharing the same visual semantic
content. Following that coarse matching, more fine-grained
comparisons are then made between the query image and the
combined elevation data and satellite imagery using image
orientation alignment procedures. As described above, the
query photo(s) in this case are untagged images meaning that
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the location(s) of the photo(s)—by way of GPS coordi-
nates—is/are unknown. It is further noted that, as provided
above, the query images, once geo-located and tagged/la-
beled using the present process can be fed back into the
system and used as training data for refining the cross-mo-
dality semantic classifier generation process outlined above.
DEM data is readily available, for example, from the U.S.
Geological Survey (USGS). As is known in the art, the DEM
data contains detailed geospatial information.

In step 202, each query ground level photo (image—
wherein the terms “photo” and “image” are being used inter-
changeably herein) is parsed into one or more different
semantic regions (i.e., regions of different semantic
attributes) and semantic labels are assigned to the semantic
regions. In one exemplary embodiment, IMARS-based
semantic classifiers are used to label the query photo(s).
IMARS—the IBM Multimedia Analysis and Retrieval Sys-
tem—is a system that can be used to automatically index,
classify, and search large collections of digital images and
videos. IMARS works by analyzing visual features of the
images and videos, and subsequently allows them to be auto-
matically organized and searched based on their visual con-
tent. IMARS includes the IMARS extraction tool and the
IMARS search tool. The IMARS extraction tool takes a col-
lection of images and videos from the user, and produces
indexes based on mathematical analyses of each piece of
content. These indexes organize the results of the analyses for
the IMARS search tool. IMARS also permits users to define
categories. Thus, the processing of the query image/reference
images, e.g., through IMARS, can permit user interaction.
IMARS is further described, for example, in A. Natsev et al.,
“IBM multimedia analysis and retrieval system,” ACM Inter-
national Conference on Content based Image and Video
Retrieval (CIVR’2008), pp. 553-554, 2008 (hereinafter “Nat-
sev”), the contents of which are incorporated by reference
herein.

The types of semantics labels can include, but are not
limited to, “ROCK,” “SAND,” “DESERT,” “VEGETA-
TION,” etc.—just to provide a few examples of IMARS-
based semantic labels/classifiers. Of course, this is not an
exhaustive list of all of the possible semantic classifiers, but is
being provided merely to illustrate what kinds of semantic
classifiers might be used. Exemplary semantic classifiers that
may be used herein to label the semantic regions in the images
are provided in U.S. Pat. No. 7,124,149 issued to Smith et al.,
entitled “Method and Apparatus for Content Representation
and Retrieval in Concept Model Space” (hereinafter “U.S.
Pat. No. 7,124,149”), the contents of which are incorporated
by reference herein. See for example FIG. 3 (described
below), wherein the query ground level image has been
assigned the semantic label “DESERT.”

In general, methodology 200 operates by performing suc-
cessively more fine-grained matching between the query
ground level image and the combined elevation data and
satellite imagery using the cross-modality semantic classifi-
ers generated above to come up with a list of potential
matches between one or more geo-spatial regions in the com-
bined elevation data and satellite imagery and the query
image. As provided above, the combined elevation data and
satellite imagery contains geo-spatial location information.
Thus, by matching the query image to the combined elevation
data and satellite imagery, the geo-spatial location of the
query image can be ascertained.

The combined elevation data and satellite imagery may be
parsed into geo-spatial regions labeled with associated
semantic content extracted by use of the classifiers. For
instance, as described above, the combined elevation data and
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satellite imagery can be read into a geospatial system such as
GIS, e.g., as araster file or converted by the GIS into a vector
data file. A raster file contains rows of uniform cells encoded
with data values. The data values may correspond to different
geo-spatial regions such as VEGETATION, WATER or
DEVELOPMENT. An example of combined elevation data
and satellite imagery parsed into different geo-spatial regions
labeled with semantic classifiers is shown, e.g., in FIG. 3A
(described below).

Parsing the query image into semantic labeled regions pro-
vides an efficient way to initially rule out large areas in the
combined elevation data and satellite imagery that do not
have matching semantic regions with the query image.
Namely, in step 204, the method first eliminates large areas of
land in the combined elevation data and satellite imagery
which are unlikely sources of the query image. At the outset,
all of the geo-spatial regions in the combined elevation data
and satellite imagery represent potential candidate locations
for the query image. In step 204, the geo-spatial regions in the
combined elevation data and satellite imagery are matched
with the query image based on one or more criteria, such as
the geo-spatial regions in the combined elevation data and
satellite imagery and the query image having the at least one
semantic region in common. Based on this first (course-
grained) matching the combined elevation data and satellite
imagery can be ranked based on the probability of its being a
match for the query image.

The cross-modality semantic classifiers (generated, for
example, as provided above) are employed in this coarse
matching step. Basically, since the semantic classifiers apply
across different modalities (i.e., across ground level and sat-
ellite image modalities) they permit matching semantic
regions present in the ground level query image with the
satellite imagery in the classification data (i.e., in the com-
bined elevation data and satellite imagery). The elevation data
(e.g., DEM data) (i.e., in the combined elevation data and
satellite imagery) will be used later in the process to make
more fine-grained matches in a pruned list of possible match-
ing geo-spatial regions. This matching using the semantic
classifiers serves to prune the list of potential matches.

In one non-limiting exemplary implementation of the
present techniques, the steps of methodology 200 are imple-
mented in a distributed Map-Reduce framework, such as the
Apache Hadoop Distributed File System (HDFS). A Map-
Reduce model for distributed processing in general involves
both Map and Reduce functions for any computation. The
Map function first reads a list of input key and associated

values, and produces a list of intermediate { key,value) pairs.
After grouping and shuffling intermediate pairs with the same
keys, the Reduce function is applied to perform merge opera-
tions on all of the intermediate pairs for each key, and emits

output pairs of {key,value). See, for example, Yan et al.,
“Large-Scale Multimedia Semantic Concept Modeling using
Robust Subspace Bagging and MapReduce,” LS-MMRM 09
Proceedings of the First ACM workshop on Large-scale mul-
timedia retrieval and mining, pgs. 35-42 (October, 2009), the
contents of which are incorporated by reference herein.
Essentially, the MapReduce model transforms a plurality of

{key,value) pairs into a list of values. The input and output

{key,value) pairs can have different formats. The Map func-
tion can be performed in parallel on non-overlapping data
partitions. The Reduce function can be performed in parallel
on intermediate pairs with the same keys. The Map-Reduce
framework may be embodied in an apparatus, such as appa-
ratus 700 shown in FIG. 7, described below.
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Step 204 of methodology 200 is illustrated schematically
in FIGS. 3 and 4. Specifically, FIG. 3A is a schematic diagram
illustrating exemplary combined elevation data and satellite
imagery and FIG. 3B is a schematic diagram illustrating an
exemplary query ground level image. As described above, the
combined elevation data and satellite imagery can be encoded
with data values which correspond to different geo-spatial
regions such as in this case VEGETATION, ROCK and
DESERT. As described above, in FIG. 3A, the classification
data (i.e., the combined elevation data and satellite imagery)
is labeled “DEM/Satellite Classification Overlay” which
means that a dataset is employed where each pixel not only
has the standard RGB color values (satellite imagery) but also
an elevation value—as described above. The present process
seeks to find coarse matches between these geo-spatial
regions in the combined elevation data and satellite imagery
and the query image using the present cross-modality seman-
tic classifiers.

According to an exemplary embodiment, step 204 is per-
formed to produce a list of potential matches of geo-spatial
regions in the combined elevation data and satellite imagery
and the query image based on a geo-spatial region in the
combined elevation data and satellite imagery and the query
image having at least one semantic region in common.
According to an exemplary embodiment, the matches in the
list are ranked. For instance, a score is produced which is
determined by how similar the semantic labeled regions are.
All of'the classification data (i.e., the combined elevation data
and satellite imagery) is then ranked against the query image
by this score. The scores are determined relatively. The
method to evaluate the combined elevation data and satellite
imagery produces an absolute, unit-less score. Probability of
a match is measured by how high this score is relative to its
peers, i.e., (score-lowest score)/(highest score-lowest
score). If all the classification data (i.e., combined elevation
data and satellite imagery) are “ranked,” relative to each other
in terms of their “score,” then those with a higher rank are
more likely matches than those on the list with a lower rank.
Thus, the list ranks the possible matches by probability. To
use a simple example, a geo-spatial region in the classifica-
tion data with one semantic region in common with the query
image would have a higher probability score than a region(s)
in the classification data that has no semantic regions in
common with the query image. Likewise, those regions in the
classification data having more than one semantic region in
common with the query image would have a higher probabil-
ity score than regions with only a single matching semantic
classifier, and so on. According to an exemplary embodiment,
the regions of the classification data that have no semantic
regions in common with the query image are eliminated from
further consideration in step 204.

As shown in FIG. 3B, the query ground level image in this
case has been parsed (see above) into one semantic labeled
region, namely DESERT. One geo-spatial region in the com-
bined elevation data and satellite imagery of FIG. 3A is
circled to indicate that the encircled geo-spatial region has at
least one semantic region in common with the query image. It
is notable that the scenario being shown is only an elementary
example to illustrate the present techniques, and more com-
plicated scenarios are of course envisioned where for instance
the query image contains multiple semantic regions and the
geo-spatial regions of the combined elevation data and satel-
lite imagery have varying numbers of matching semantic
classifiers with the query image. By way of example only, the
query image might contain the semantic regions DESERT
and ROCK. Further there might be a geo-spatial region in the
combined elevation data and satellite imagery that contains
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the semantic region DESERT and another that contains both
the semantic regions DESERT and ROCK. The geo-spatial
region of the combined elevation data and satellite imagery
containing both semantic classifiers in common with the
query image would thus have a higher ranking score than that
region with only one match in common (or those with no
matches in common).

As highlighted above, based on this initial course-grained
matching in step 204 the geo-spatial regions in the combined
elevation data and satellite imagery can be ranked. The rank-
ing is based on the probability that classification (i.e., com-
bined elevation data and satellite imagery) data is a match for
the query image. By way of this ranking, the process can
focus on those classification data with a high probability of
being a potential match with the query image, thus greatly
reducing the amount of data to be processed. See for example
FIGS. 4A and 4B.

Specifically, FIG. 4A is a schematic diagram illustrating
the exemplary combined elevation data and satellite imagery
data (from FIG. 3A) having been ranked based on the above-
described course grain matching using the cross-modality
semantic classifiers. A shown in FIG. 4 A, the high probability
regions (based on the labeled semantic regions probability
score—described above) are shown in white. Regions of
lower probability are shown in grey and areas of lowest prob-
ability of a match to the query image are shown in black. At
this stage, the probability is solely determined by similarity of
semantic content between the combined elevation data and
satellite imagery regions and the ground level photo. Similar-
ity may be defined by a metric, such as the 1.2 distance
between semantic model vectors, where each element of the
vector is the resultant score from each of the cross-modality
semantic classifiers. For comparison, the query image is
shown adjacent to FIG. 4A in FIG. 4B.

Referring back to FIG. 2, the next step in methodology 200
is to perform matching of the query image with the combined
elevation data and satellite imagery data within candidate
geo-spatial regions with similar semantic content. Specifi-
cally, the focus will now be centered on those regions of
higher probability from the step 204 matching and a more
fine-grained matching process will be performed on those
areas. The goal here is to take the ranked list of candidate
matches from step 204 wherein the ranking is based on a
probability score—as described above, and refine the scoring
using a more fine-grained focus on those regions of higher
ranking in the list. This more fine-grained analysis (of higher
probability matching regions) involves the elevation data
(e.g., DEM data) component of the classification data. As will
be described in detail below, for those “coarse” matching
regions (based, for example, on the (cross-modality) seman-
tic classification matches between the satellite imagery com-
ponent and the query ground level image) image orientation
alignment will now be performed for horizon matching.

According to one exemplary embodiment, this more fine-
grained analysis is performed in multiple steps. Namely, in
step 206, an array of positions is evaluated in high likelihood
areas, i.e., high probability geo-spatial regions of the com-
bined elevation data and satellite imagery data (those regions
identified in step 204).

It is notable that what specific regions of the combined
elevation data and satellite imagery data are selected for this
fine-grained analysis are likely application-specific. For
instance, as described above, the ranking of matches between
the combined elevation data and satellite imagery data and the
query image is based on the number of semantic regions a
match has in common. The “high-probability” matches
would be those that have the most number of semantic regions
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in common. Using the example provided above where the
query image has two semantic regions DESERT and ROCK,
the more fine-grained analysis may be performed for only
those regions in the combined elevation data and satellite
imagery data that contain both classifiers DESERT and
ROCK. However, if the number of regions in the combined
elevation data and satellite imagery data containing both
DESERT and ROCK classifiers is small or non-existent, then
in order to broaden the potential pool of candidates, it may be
desirable to expand the fine-grained analysis to regions of the
combined elevation data and satellite imagery data containing
only one classifier in common with the query image, i.e.,
DESERT and/or ROCK. This determination would be within
the capabilities of one skilled in the art given the teachings
presented herein.

The sampling density of the array of positions is selected to
be proportionate with the surrounding regions probability
score output in step 204. In such a manner, the method
chooses to spend more computational resources looking for
an exact location match in areas that are highly probable, and
spends less time in areas that are less probable, as determined
by the semantic matching. Therefore, the sampling density in
units of samples per square kilometer (km) may be a function
of'a constant “c” multiplied by the probability “p.” The con-
stant is a value that can be determined empirically, and may
vary depending on how complex the characteristics of the
surrounding region of interest happen to be. For the purposes
of the present techniques, the constant is chosen as 100 (a
10x10 grid). The probability “p” may be determined by the
proportion of uniquely matching semantics, scaled by the
total number of observed semantics in both query and test
regions.

According to an exemplary embodiment, step 206 is per-
formed by using a fast “rough guess” process to make a
likelihood estimate for each position in each of the arrays. By
way of example only, step 206 can involve a spherical vector
cross-correlation mapping between processed edges on the
query image and the topography/elevation component of the
classification data. See for example Baboud, the contents of
which are incorporated by reference herein. Baboud provides
a detailed process for integrating edge orientations in cross-
correlation mapping, wherein the orientation information is
represented as a 2D real-valued vector field. See, for example,
FIG. 8 of Baboud. Baboud describes cross-correlation
between images using the fast fourier transform (FFT) and
how edge orientations can be integrated into that process
using an angular similarity operator.

As provided above, the present process can be imple-
mented in a distributed Map-Reduce framework, such as the
Apache Hadoop Distributed File System. Positions will be
organized as Hadoop “jobs” with a priority initially ranked by
the probability scores assigned in step 204. Both the spherical
cross correlation technique and subsequent edge-matching
methods have associated search space resolutions. See
Baboud. The present technique will start off with a very
coarsely grained angular search space, using only spherical
cross correlation, and produce a score proportionate with the
probability that the position is a match to the image. Based on
step 206, processed positions will be resubmitted to the
Hadoop Job queue with an updated priority value that is
proportionate with the new score.

Step 206 of methodology 200 is illustrated schematically
in FIG. 5. Specifically, FIG. 5A is a schematic diagram illus-
trating evaluation of an array of positions in a geo-spatial
region of the combined elevation data and satellite imagery
data which in step 204 received a high semantic probability
score (see FIG. 4A). Techniques for determining sampling



US 9,292,766 B2

11

density of the array were provided above. For comparison, the
query image is shown adjacent to FIG. 5A in FIG. 5B.

The result from the “rough guess” process in step 206 is a
likelihood estimate for each of the positions in the array.
These estimates can be used to create a list that ranks each of
the positions in the array. For instance, a relative score can be
assigned to each of the positions in the array based on their
estimated likelihood of being a match to the query image.
This scoring process was described in detail above. Namely,
if all the positions are “ranked,” relative to each other in terms
of'their “score,” then those with a higher rank are more likely
matches than those with a lower rank. Thus, the list ranks the
possible matches by probability. Now, a finer-grained process
can be used to evaluate the positions to determine and confirm
whether the score determined in step 206 is correct. For
instance, while the “rough guess” estimate performed in step
206 is relatively fast, it may contain inaccuracies. See for
example Baboud.

Thus, referring back to FIG. 2, the next step in methodol-
ogy 200 is to use a slower, more accurate matching process to
further evaluate the positions in the array to refine the geo-
location estimate. See step 208. Again the topography/eleva-
tion component of the classification data will be used in this
step. The input to step 208 is the array of positions having an
updated priority value that is proportionate to the score deter-
mined in step 206. In step 208, the positions in the array are
then evaluated (using the finer-grained process) according to
their score in the ranking, with the higher probability score
positions being processed before the lower probability score
positions. As shown in FIG. 2 the process is iterative. For
example, if by way of step 208 it is determined that one or
more of the estimations made in step 206 are incorrect, then
steps 206 and 208 can be repeated in an iterative manner. By
way of example only, as provided above, the “rough guess”
estimate from step 206 produces a ranking of the positions.
The determination that one or more of the estimates is incor-
rect (and thus another iteration is needed) can be based on if,
after performing the more fine-grained process in step 208,
the ranking of the positions has changed. This might indicate
that there was an inaccuracy in the “rough guess” process.
Therefore, the process reverts back to step 206 in an iterative
manner until no inaccuracies in the estimations are detected.
It is notable that in further iterations, the ranking might
change once these inaccuracies are detected and corrected,
thus the priority of the positions evaluated might similarly
change from one iteration to the next. By performing the
process by way of steps 206 and 208 provides the best of both
worlds in terms of processing efficiency (step 206) and accu-
racy (step 208).

According to an exemplary embodiment, step 208 is per-
formed using a silhouette map matching process, such as that
described in Baboud. According to Baboud, a feasible silhou-
ette map can contain T-junctions, but no crossings. Crossings
appear only in singular views, when two distinct silhouette
edges align. See FIG. 4 of Baboud. The techniques in Baboud
overcome the inaccuracies associated with conventional
edge-detection techniques due, for example, to noisy edges.

As provided above, the present process can be imple-
mented in a distributed Map-Reduce framework, such as the
Apache Hadoop Distributed File System. As provided above,
steps 206 and 208 are iterative, whereby evaluations are fur-
ther refined each time a position is resubmitted to the Hadoop
Job queue. Either finer resolutions are chosen for Baboud’s
alignment method to attain a more accurate matching, or the
more precise edge matching process (e.g., silhouette map
matching) described by Baboud is selected. If the finer reso-
Iutions and more precise edge matching produce less-exact
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matches than more coarse matching methods, the geospatial
location will receive a lower rank, and thus lower its priority
for further evaluation. Methodology 200 may also be adjust-
able by the end-user: such as by using a threshold ranking
confidence level chosen by the user (i.e. return top “n”
matches, e.g., top 100 matches).

Step 208 of methodology 200 is illustrated schematically
in FIG. 6. Specifically, FIG. 6A is a schematic diagram illus-
trating “rough guess” silhouette matching having been per-
formed on points identified in step 206 (e.g., using cross-
correlation). In this example the finer-grained silhouette
matching is being performed on the positions in the array with
white shading, and the true correct results are shown in gray.
Basically, these are geospatial coordinates to be fed to
Baboud’s method for “rough-guess” scene alignment
between the classification data and the ground level photo-
graph (locations shown in black). If the scene alignment is
good, this constitutes a good match. Each geospatial position
evaluated is returned in a ranked list based on how good the
matching was. The better matching positions are chosen for a
finer matching process to confirm the results (locations shown
in white). The “correct” match is shown in gray, among the
white locations. For comparison, the query image is shown
adjacent to FIG. 6A in FIG. 6B.

The results of methodology 200 will be a list of candidate
combined elevation data and satellite imagery data matches
for the query ground level image. This list can be presented to
the user along with the probability scores. It is then up to the
user as to what they want to do with the results. The user might
simply want to have a list of potential matches. For instance if
the user is searching for geo-location matches for a query
image, he/she might simply want a list of potential matches
which the user can then further prune based on other factors
not taken into consideration here such as specific landmarks,
foliage, etc.

The user may also wish to supplement ground-level photo
semantic classifiers with data resulting from correctly anno-
tated query ground level photo(s). For instance, if the user
finds a match between the query photo and the combined
elevation data and satellite imagery data, then the user might
annotate (tag/label) the query image with the GPS coordi-
nates (or any other useful data) of the location. As described
above, these now-tagged query images may be added to the
pool of GPS tagged ground level images used to generate the
cross-modality semantic classifiers—thus expanding the
training set.

If multiple regions are identified by semantic matching
with a probability greater than zero, then each region is
sampled at a density linearly proportionate with the probabil-
ity assigned to that region according to the proportion of
matching semantics. FEach sample is evaluated using
Baboud’s method for a “rough-guess” scene alignment.

As highlighted above, the present techniques may be fur-
ther adapted to infer time of year (season) in which a query
ground-level photo was taken, as follows: As in the process
depicted in FIG. 1 for creating ground level semantic classi-
fiers for particular geospatial coordinates, the geospatial que-
ries can be augmented with terms that specify the time of year,
such as “spring,” “summer,” “autumn” (fall), and “winter.”
For each cross-modality semantic classifier generated previ-
ously (such as “vegetation” or “water”), 4 new additional
semantic classifiers will thus be generated for each particular
season of the year (such as “vegetation winter,” “vegetation
spring,” or “water summer”).

Turning now to FIG. 7, a block diagram is shown of an
apparatus 700 for implementing one or more of the method-
ologies presented herein. By way of example only, apparatus
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700 can be configured to implement one or more of the steps
of methodology 100 of FIG. 1 for generating cross-modality
semantic classifiers and/or the methodology 200 of F1G. 2 for
geo-locating a query ground level photo of an unknown loca-
tion from combined elevation data and satellite imagery.

Apparatus 700 comprises a computer system 710 and
removable media 750. Computer system 710 comprises a
processor device 720, anetwork interface 725, amemory 730,
a media interface 735 and an optional display 740. Network
interface 725 allows computer system 710 to connect to a
network, while media interface 735 allows computer system
710 to interact with media, such as a hard drive or removable
media 750.

Asisknown in the art, the methods and apparatus discussed
herein may be distributed as an article of manufacture that
itself comprises a machine-readable medium containing one
or more programs which when executed implement embodi-
ments of the present invention. For instance, when apparatus
700 is configured to implement one or more of the steps of
methodology 100 the machine-readable medium may contain
a program configured to (a) use GIS data to label satellite
images; (b) use the satellite images labeled with the GIS data
as training data to generate semantic classifiers for a satellite
modality; (c) use the GIS data to label GPS tagged ground
level photos; (d) use the GPS tagged ground level photos
labeled with the GIS data as training data to generate semantic
classifiers for a ground level photo modality, wherein the
semantic classifiers for the satellite modality and the ground
level photo modality are the cross-modality semantic classi-
fiers.

When apparatus 700 is configured to implement one or
more of the steps of methodology 200 the machine-readable
medium may contain a program configured to (a) parse the
query ground level photo into one or more semantic regions;
(b) assign semantic labels to the semantic regions; (c) use
cross-modality semantic classifiers to identify geo-spatial
regions in the combined elevation data and satellite imagery
that have at least one semantic classifier in common with the
query ground level photo; and (d) perform matches of the
query ground level photo with the combined elevation data
and satellite imagery for each of the geo-spatial regions iden-
tified in step ().

The machine-readable medium may be a recordable
medium (e.g., floppy disks, hard drive, optical disks such as
removable media 750, or memory cards) or may be a trans-
mission medium (e.g., a network comprising fiber-optics, the
world-wide web, cables, or a wireless channel using time-
division multiple access, code-division multiple access, or
other radio-frequency channel). Any medium known or
developed that can store information suitable for use with a
computer system may be used.

Processor device 720 can be configured to implement the
methods, steps, and functions disclosed herein. The memory
730 could be distributed or local and the processor device 720
could be distributed or singular. The memory 730 could be
implemented as an electrical, magnetic or optical memory, or
any combination of these or other types of storage devices.
Moreover, the term “memory” should be construed broadly
enough to encompass any information able to be read from, or
written to, an address in the addressable space accessed by
processor device 720. With this definition, information on a
network, accessible through network interface 725, is still
within memory 730 because the processor device 720 can
retrieve the information from the network. It should be noted
that each distributed processor that makes up processor
device 720 generally contains its own addressable memory

10

15

20

25

30

35

40

45

50

55

60

65

14

space. It should also be noted that some or all of computer
system 710 can be incorporated into an application-specific
or general-use integrated circuit.

Optional display 740 is any type of display suitable for
interacting with a human user of apparatus 700. Generally,
display 740 is a computer monitor or other similar display.

Although illustrative embodiments of the present invention
have been described herein, it is to be understood that the
invention is not limited to those precise embodiments, and
that various other changes and modifications may be made by
one skilled in the art without departing from the scope of the
invention.

What is claimed is:

1. An apparatus for generating cross-modality semantic
classifiers, the apparatus comprising:

a memory; and

at least one processor device, coupled to the memory,
operative to:

(a) use Geographic Information Service (GIS) data to
label satellite images;

(b) use the satellite images labeled with the GIS data as
training data to generate semantic classifiers for a
satellite modality;

(c) use the GIS data to label Global Positioning System
(GPS) tagged ground level photos; and

(d) use the GPS tagged ground level photos labeled with
the GIS data as training data to generate semantic
classifiers for a ground level photo modality,

wherein the semantic classifiers for the satellite modal-
ity and the ground level photo modality are the cross-
modality semantic classifiers.

2. Anapparatus for geo-locating a query ground level photo
of an unknown location from combined elevation data and
satellite imagery, the apparatus comprising:

a memory; and

at least one processor device, coupled to the memory,
operative to:

(a) parse the query ground level photo into one or more
semantic regions;

(b) assign semantic labels to the semantic regions;

(c) use cross-modality semantic classifiers to identify
geo-spatial regions in the combined elevation data
and satellite imagery that have at least one semantic
classifier in common with the query ground level
photo; and

(d) perform matches of the query ground level photo
with the combined elevation data and satellite imag-
ery for each of the geo-spatial regions identified in
step (¢).

3. The apparatus of claim 2, wherein IMARS-based
semantic classifiers are used to label the semantic regions.

4. The apparatus of claim 2, wherein the at least one pro-
cessor device is further operative to:

(h) generate the cross-modality semantic classifiers by 1)
using GIS data to label satellite images; ii) using the
satellite images labeled with the GIS data as training
data to generate semantic classifiers for a satellite
modality; iii) using the GIS data to label GPS tagged
ground level photos; and iv) using the GPS tagged
ground level photos labeled with the GIS data as training
data to generate semantic classifiers for a ground level
photo modality, wherein the semantic classifiers for the
satellite modality and the ground level photo modality
are the cross-modality semantic classifiers.
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